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Abstract. Jointed rock mass presents a nonlinear compressible discontinuos mechanical sys-
tem which is difficult to model using traditional continuum mechanics. Continuum models cali-
brated on a small scale rock samples are often applied in large scale engineering calculations.
Yet, it is known that on the large scale the response of rock masses is drastically different and
depends both on rock and joint properties. Large scale rock response is poorely understood
because experimental studies are scarce and expensive as well as the computational efforts to
study this response. We have developed tools to model such systems in a wide range of loading
conditions which are based on advanced contact algorithms and hybrid FD/FE methods. The
papers illustrates some of the ideas for meso-scale modeling which could be applied to build
better continuum models for rock mechanic applications for specific conditions.
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1 INTRODUCTION

Advanced numerical methods to model dynamic processes in jointed rock are required for
a number of problems of strategic importance such as, stability of underground structures to
shock wave loading, monitoring of mining operations, discrimination of underground events
etc. Most of engineering applications supporting this research rely on continuum models to
describe mechanics of rock masses under dynamic loading. These models are typically cali-
brated at lab scale using rock samples from the site of interest. Yet, it is known that large scale
response of rock masses is drastically different and depends both on rock and joint properties.
Meso-scale numerical modeling can provide useful information to help build better continuum
models for engineering applications. Jointed rock mass presents a nonlinear compressible dis-
continuous mechanical system which is difficult to model using traditional continuum mechan-
ics. Therefore, development of hybrid discrete-continuum methods is important. Some aspects
of the problems mentioned above can be better handled with the continuum mechanics while
the others are better solved with discrete methods. For example, is important for defense com-
munity to evaluate risks to deeply berried structures (tunnels, bunkers, pipelines etc) to surface
attacks. This type of problems typically include two time scales. The first one, is defined by the
time to propagate the wave from the surface to the structure and the second one is defined by
the collapse time under gravity. Hybrid discrete-continuum approaches are desirable to model
different aspects of this problem where a continuum approach can be applied to model wave
generation and wave propagation phases but a discrete approach is desirable to model the col-
lapse of the structure.

Equivalent continuum response of jointed rock may be frequency dependent. This may
be important for discrimination of underground events within the nuclear monitoring program
which serves to discriminate between natural events such as earthquakes and underground cav-
ity collapses from products of human activity (nuclear explosions, mine explosions etc). The
challenging part in modeling of such problems is a large wave frequency scale that should be
resolved (from 1 KHz around the source to less than 1 Hz to model seismic wave propagation at
regional distances where the monitoring is performed. Two strategies can be used to solve such
problems: continuous remap from smaller to large scale within one code or coupling different
tools which are used in various frequency ranges. From continuum modeling point of view
this class of problems presents another challenge. That is for each wave length the equivalent
continuum may have a different mechanical characteristics (such as effective stiffness and yield
strength) exhibiting scale dependence.

Another class of problems includes monitoring industrial underground operations such as,
hydro-fracturing operations to boost gas production by enhancing fracture network, under-
ground coal gasification and geothermal systems. The problems encountered in such operations
are primarily quasi-static where the stress equilibrium is achieved at any time but is slowly
changing due to various factors caused in part by the operation procedure. Equivalent contin-
uum properties are required for such systems to evaluate the stability criteria and predict stress
evolution during the operation. At the same time, since direct real time insitu stress measure-
ments are limited and very expensive, seismic monitoring can be used in combination with the
numerical simulation of microseismicity cased by the operation. The difficulty here is that one
need to resolve vastly different time scales which coexist: the natural scale of evolving insitu
stress due to tectonic motion ( few years), the time scale of the operation ( one day to a month)
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and the characteristic time of microsiesmic events ( 1 sec and less).

Motivated by the problems and challenges described above, we are developing tools to model
dynamic response of discontinuous systems in a wide range of loading conditions which are
based on advanced contact algorithms and hybrid FD/FE methods. The papers illustrates some
of the ideas for meso-scale modeling which could be applied to build better continuum models
for rock mechanic applications.

Figure 1: Schematic representation of joint sets

2 EQUIVALENT CONTINUUM MODELS FOR JOINTED ROCK MASSES

Since it is practically impossible to model every single joints and fault for a large scale prob-
lem, equivalent continuum models are often applied in rock engineering calculations. Most of
these calculations assume that the rock mass can be treated as an elastic material. Effective
elastic moduli are found as a combination of intact elastic moduli and elastic stiffnesses of the
joints. The simplest approach used by Fossum [1] et al assumes that the joints are linear elastic
layers of material randomly distributed in space. If the joint distribution density and aperture
are known, then the effective elastic moduli can be found by averaging elastic compliances.
This results in an isotropic elastic medium with reduced elastic moduli. Very little has been
done to study response of jointed rock mass for the cases of large deformations when it cannot
be considered linear anymore. Nonlinear compressibility at low confinements comes primarily
from the nonlinear character of the joints [5]. A number of constitutive models has been de-
veloped to model shock wave propagation in jointed rock caused by explosions. Most of them
are completely unrelated to the properties of the intact rock samples measured at the lab except
that they apply the same form of constitutive equations. Model parameters are then fitted in
numerical simulations to match observed large scale response. An attempt to build large scale
model based on the extension of the small scale model was made in [6], where effect of joints
on overall compressibility and strength has been studied for quasi-static loading conditions. It
helped to develop scaling rules for jointed rock masses. Dynamic testing of synthetic rock mass
was studied in [7].
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3 MESO-SCALE MODELING OF JOINTED ROCK RESPONSE TO DYNAMIC LOAD-
ING

We will consider dynamic loading of rock masses to the stresses above the strength limit of
intact material. In this case responses of both joints and intact blocks are inherently nonlinear,
which makes the task of determining of effective properties much more difficult. Strength prop-
erties of geologic materials are known to vary with the sample size, therefor they may depend
on the size of the representative volume defined by the wave length in dynamic problems. It
means that the equivalent response can be frequency dependent. Damage in jointed rock mass
tends to localize at the joints which are much thinner than the rock blocks which they connect.
To resolve the joints special numerical techniques (such as thin elements [2], contact elements
etc) are required. Joints are often represented in joint sets which are not necessarily persistent.
Schematic representation of joint sets is shown in 1. Meshing non persistent joint sets is very
difficult. As damage develops in the rock mass, material transitions from continuum medium
with singularities (joints cracks etc) to a granular medium. Modeling such transition algorithmi-
cally difficult. Taking into consideration all these difficulties we have developed a few recipes
to model these systems using discrete-continuum approach. The medium is presented as an
assembly of sudiscretized meshed blocks connected by the contact elements. Nonlinear Finite
Difference and Finite Element solvers are used to model deformations in the blocks and sim-
ple common plane contact elements described in [8] are used to model interaction between the
blocks. In addition, we consider fragmentation of the blocks into a number of sub-blocks with
possibility of dynamic mesh refinement withing the blocks.

Figure 2: Using variable cohesive contacts to mesh 25% persistent joints: a)frictional contacts, b) the mesh built
using stacked parallelipiped blocks mesh.

3.1 Recipe #1: Modeling non-persistent joints using variable frictional properties at the
contacts

Since meshing non-persistent joints is a nontrivial problem, we suggest the following sim-
pler way to model joint sets. First, we generate a persistent joint sets which present a system of
parallel planes (lines in 2D) ,for example, three-joint system which is very common in nature.
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Such planes will cut parallelepiped blocks which could be easily meshed using hexahedral ele-
ments. Secondly, we set-up elastically stiff contacts with higher cohesive properties which will
effectively stop joints both from sliding and normal compression mimicking a tied boundary
that way. Figure 2 shows an example of the meshing of such three joint system. The joints
were 25% persistent in two directions and 50% persistent in one direction. Only frictional
joints are shown as well as the mesh used. Since blocks represent independently meshed vol-
umes, adaptive meshing can be applied using variable meshing accuracy for the blocks. One
can present continuum as an assembly of the blocks tied together through cohesive contacts.
Figure 3 shows a 2D example, how by varying the joint properties one can transition from a
continuum to a jointed medium. We set all joints as stiff cohesive contacts and used velocity

Figure 3: Comparing wave propagation in a system with locked joints with continuum calculation. 15X15 blocks
is on the left, 5x5 blocks is in the middle and continuum is on the right. Velocity range -5 m/s (dark) to 5 m/s
(light), time=60 ms

boundary in the middle of the mesh to generate the waves. A group of nodes in the middle of
the region was controlled by a velocity boundary moving horizontally as it is shown in Fig.4.

As it is seen from the Figure 3, there is very little difference between the continuum cal-
culations without joints (on the right) and the region consisting of various number of blocks
connected by joints as long as the joints are strong.

Figure 4 shows the contours of horizontal velocity calculated at two target locations at the
same range from the source. The cohesion on the joints was reduced so the joints were allowed
to slip. Reduced cohesion also affected the tensile strength of the joints. This caused the joints
on the left side to open and as a result of it the wave propagated asymmetrically.

3.2 Recipe #2: Efficient hybrid contact search algorithm

Presence of multiple contacts can make calculations computationally expensive. During
dynamic loading of jointed systems only a small number of contact surfaces remain active at
any time. Therefore, most of contacts do not change connectivity over many computational
cycles. Because of that, they can be often excluded from the contact search. Thus, contact
faces should only be added to the list of candidates which can create new contacts if there is
a significant shear displacement taking place at these faces. We have introduced two types of
contacts: cohesive contacts and collisional contacts which are initially defined by the boundary
conditions set at the faces. The collisional contacts (called here type 0 contacts) are assumed
to change dynamically every few cycles and are typically assigned to the external boundaries
of discrete blocks (such as, for example sand grains or moving objects). The cohesive contacts
in turn (type 1) are assumed to stay in place until a certain amount of shear slip is accumulated
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Figure 4: Wave propagation in a system of 15x15 blocks with unlocked joints

at the faces. When it happens, the contact can be considered broken and its type is switched to
type 0 (collisional contacts). All faces of type 1 contact are excluded from the contact search
once the contacts involving those faces are established. The contacts of type 0 are generally
included into new contact search. To improve the computational efficiency further, they can
be temporarily excluded from the new contact search if their velocities are small, which means
that they do not have a chance to move and create a new contacts. Figure 5 shows an example
of using hybrid contact algorithm for shear loading of a representative region in 2D. A jointed
system with two sets of joints was loading using velocity boundary conditions (shown with
black dots) applied to the nodes of the elements on the periphery of the region. Plastic slip has
developed overtime at the contacts close to the boundaries and in the middle of the region which
triggered the transition from type 1 contact to type 0 contact. The problem runs roughly two
times faster when the hybrid contacts are used.

Figure 6 shows problem set-up for calculation of spherical explosion in a 3 set jointed rock
formation. The region was meshes as an assembly of paralelipiped blocks subdiscretize into
different level of accuracy. The source block was meshed differently using conforming hexa-
hedral meshes for a sphere and a block with a spherical cavity of the same size. The radius of
the was 0.625 m, and the size of the source block was 4 times bigger than the other blocks. The
source was modeled as an ideal gas material with density of 1.32 g/cc, specific internal energy
of 3.9 kJ/g and gamma parameter of 1.3. Cohesive contacts (type 1) were used between the
block which later transitioned into collisional contacts (type 0) as it is shown in Figure 7, which
also shows the pressure contours in the range (0.001-0.01 GPa).

3.3 Recipe #3: Using discrete meshes to model fracture and fragmentation

To model damage and fragmentation in rock masses one can either use a continuum plastic-
ity model which includes some history variables describing the strength softening or allow an
explicit description of new fractures in the material at localized zones of failure which can be
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Figure 5: Shear loading of an RVE with two sets of joints using hybrid contact

Figure 6: Mesh and block locations for 3D explosion in a jointed rock

significantly smaller then the cell size. The first, continuum approach, can be mesh sensitive,
since sub-cell localization zones cannot be accurately resolved. The second approach includes
algorithmic difficulties to transition from continuum to discrete description of the failure zone.
We believe that when new localized failure zones are created (such as cracks, joints) mechanical
properties in those zones (such as friction, dilatancy, stiffness) are significantly different from
the intact material, and, therefore, it is difficult to described them using the same strength model
as the one used for the intact material. Even if such a wide-range strength continuum model
is designed one should resolve the localization zone which could be few orders of magnitude
less than the characteristic size (cell size). Therefore, the second, discrete, approach looks more
attractive to us since it applies a special modeling for the localized zones of failed material in
addition to the continuum modeling elsewhere. We hope that such a discrete-continuum ap-
proach can be useful in meso-scale modeling of fracture and fragmentation especially in the
systems with preexisting discontinuities. We apply common plane contact [7] with history vari-
ables describing damage at the contacts which in the limit of stiff and strong contacts describe
continuum (as it was shown above) and, once material brakes, transition to frictionless slide
contacts. Contacts change type from type 1 to type 0 (collisional contacts) when such transition
takes place. Figure 8 shows an example of shear loading of an RVE made of tightly packed
polygonal blocks. The blocks were meshed using premeshed spheres which were placed inside
the polygones and deformed radially to conform to the boundaries. Then an equipotential zon-
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Figure 7: Pressure contours and joint types at time t=3 ms

ing was applied to improve the mesh inside the polygone. Velocity controlled boundaries were
applied at the boundary nodes.

Such method limits the possible path for the fracture surfaces to the existing mesh lines which
may create a mesh bias. Possible solution is to seed the centers of weakness in the material
and use meshing technique which connects those centers (for example, Voronoi triangulations).
Changing the mesh resolution in this case will guarantee that all meshes offer the same fracture
paths aligned with the material weakness and , thus, less likely will be mesh sensitive.

Figure 10 shows dynamic block fragmentation.

3.4 Recipe #4: Using dynamic decoupling with mesh refinement

The alternative to a prefractured mesh described above is a dynamic element decoupling. It
has an advantage if only small fraction of the material experiences failure during the loading.
We have implemented the following decoupling algorithm: Once the shear or tensile stress in
an element reaches a critical value (within 10 percent to the failure criterion) this element is de-
coupled from the mesh and contact faces created for the existing faces of the element as well as
new external faces which belong to the neighboring elements. The contact variables are initial-
ized immediately to support both the normal and the shear stresses interpolated to the interface
from the adjacent element centers. If high resolution is required to resolve the fracture path
withing the element, the element can be subdiscretized or remeshed. In this case, more than one
external face is created for each side of the element which now becomes a subdiscretized mesh
block. Figure 9 shows a simple 2D problem illustrating the dynamic decoupling algorithm with
block refinement. A cylindrical tunnel in an imbricate wall is impacted by a steel cylindrical
projectile with 100 m/s velocity.

4 CONCLUSIONS

In this paper we have discussed outstanding problems in modeling mechanics of heavily
jointed rock masses under dynamic loading conditions. We have offered some numerical recipes
which may help to overcome difficulties in modeling of large-scale responses of jointed rock
masses. The brief list of these recipes is given below.

• We advocate discrete-continuum approach, where discrete features of the rock mass is
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Figure 8: Shear stress and pressure evolution for 2D RVE made of packed blocks. Block deformations is shown
at various times

explicitly modeled only where the highest fidelity is required (for example, around the
structures) and everywhere else they are replaced by equivalent continuum models. The
equivalent continuum models can be derived for specific sites and specific loading con-
ditions by gradually replacing areas where discrete model is applied with a continuum
model where the model parameters can be optimized to produce minimal deviation be-
tween the two models.

• To calibrate the continuum model meso-scale calculations can be performed on Repre-
sentative Volumes where the joints are represented by contacts with history variables.

• Initial properties of these contacts can vary to model transitions between indefinitely
strong cohesion in the limit of continuum and a frictional surface where material breaks
along the contact surface. Thus by using initially strong contacts we can simplify meshing
task for non-persistent joints.

• Since material on both sides of the strong contact stays together until it breaks, there no
need to apply contact search algorithm for those contacts. Thus, we introduce two types of
contacts: the cohesive contact type, not used in contact search, and the collisional contact
type which represents moving surfaces that are used to find new contacts. When many
contacts are used to model both existing and potential fracture surfaces, this separating is
crucial to drastically reduce the time of computations.
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Figure 9: Cavity collapse under impact:Meshed blocks, contact boundaries between blocks(small dots) and fixed
bottom boundary (large dots)

• Mesh sensitivity is a known problem for continuum modeling of materials with damage.
One way to defeat it is to introduce a time or space scale into continuum model. To match
realistic response very often this scale turns out to be much smaller than the element size
which makes calculations impractical. We suggest to model softening response only at
the contact surfaces. The characteristic size in this case is defined by the joint aperture,
which is typically two orders of magnitude less than the element size. Assuming that
the stability time step is not defined by the contact model, we can converge to mesh
independent solution without making the time step dependent on the characteristic size.
The limitation of our approach is that the damage may only happen along the mesh lines
where the contacts exist.
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Figure 10: Cavity collapse under impact:block fracture and motion around the cavity at different times
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Figure 11: Block boundaries, target point location and computational mesh for 2D explosion in jointed rock.
Radial velocity evolution at range 20 m is shown in the low left corner

Figure 12: Pressure contours (0-0.1 GPa), shear slip at the joints (0-1) and material boundary between the source
and rock. Enlarged source region is shown on the right
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